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ABSTRACT

The Bushveld Complex in South Africa is the largest layered
mafic intrusion in the world and a major producer of platinum-group
elements (PGEs). Economic mineralization is found in the Merensky
Reef and the UG2 and UG1 chromitites and includes osmium-bearing
laurite (Ru, Ir, 0s)S;. The laurite-bearing samples have 57Qs/ 18605
ratios of 1.28-1.60, which are more radiogenic than predicted for
mantle-derived, 2.0 Ga Os (~0.9) and indicate a system-wide assimila-
tion of crustal Os. The UG1 chromitite is stratigraphically the lowest
and the least radiogenic (1.28), whereas the Merensky Reef is the
highest and most radiogenic (1.41-1.60; Hart and Kinloch, 1989).
Radiogenic Os from crustal assimilation in mantle-derived magmas or
from hydrothermal fluids can account for these high isotopic ratios.
Assimilation models require that Os, and by inference other PGEs, are
carried in Al-rich tholeiitic (A) magmas rather than high-Mg ultra-
mafic (U) magmas. Pyritic black shales in contact with the intrusion
may be high in radiogenic Os, and less than 1% shale assimilation in an
A magma can explain the observed ratios. Late-stage hydrothermal
fluids driven by the heat of the intrusion could also have carried Os
and other PGEs from adjacent rocks into specific layers of the Bush-
veld. The Os-isotope data add to mounting evidence that PGEs in
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layered mafic intrusions may be derived from crustal sources and can
no longer be considered as solely a product of mantle-derived mag-
matic proeesses.

GEOLOGIC SETTING OF THE BUSHVELD COMPLEX

The Bushveld Igneous Complex in South Africa, the largest layered
mafic intrusion in the world, is several hundred times larger than the
Stillwater, Muskox, or Skaergaard complexes and accounts for about 40%
of world platinum-group element (PGE) production (Willemse, 1969;
Loebenstein, 1984). The complex includes three major rock units: the
andesitic to rhyolitic Rooiberg Felsites (>2.0 Ga), the ultramafic to mafic
Rustenburg Layered Suite (2.05 Ga), and the Bushveld granites (2.0-1.7
Ga; Fig. 1). The Rustenburg Layered Suite intrudes the 2.2-2.1 Ga pelitic
and calcareous sedimentary Transvaal Sequence and is exposed in three
areas known as the western lobe, the eastern lobe, and the northern limb
(Fig. 1). These areas, though widely separated, appear to have shared a
common magma source, because radiometric ages, chemistry, and layering
sequences are similar (von Gruenewaldt et al,, 1985; Hatton and von
Gruenewaldt, 1987; Sharpe, 1985).
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Figure 1. Geology of
Bushveld Complex, with
Rustenburg Layered
Suite stratigraphy. Let-
ters a through d indicate
sample locations. (Modi-
fied from Guilbert and
Park, 1986.)
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The Rustenburg Layered Suite is divided into the lower, critical,
main, and upper zones and varies in thickness from 7 to 9 km (Schiffries
and Skinner, 1987; Fig. 1). The layering is remarkably continuous and can
be traced for kilometres in outcrop and correlated in exposures over 300
km apart (Figs. 1, 2). Roughly 20 chromitite layers up to 2 m thick are
found in the critical zone, and in the eastern and western lobes the upper-
most of these layers contain economic levels of PGEs (Schiffries and
Skinner, 1987; Kinloch, 1982). The PGEs are present as sulfides, tel-
lurides, and alloys associated with the upper group or UG1 and UG2
chromitites and the Merensky Reef (Fig. 2).

PGE MINERALIZATION AND Os-ISOTOPE
SYSTEMATICS

Ideas concerning the origin of PGE mineralization are diverse. Many
favor a magmatic origin involving immiscibility of sulfide, oxide, and
silicate melts and crystal settling (von Gruenewaldt et al., 1990; Naldrett
and von Gruenewaldt, 1988) or late-stage magmatic fluids that carry
PGEs upward from the base of the cumulate-magma pile to precipitate at
sulfur-bearing chromitite layers (Balthaus and Stumpfl, 1986; Boudreau et
al,, 1986; Ballhaus et al., 1988). These theories are dependent on geochem-
ical and petrologic modeling which suggests that the Bushveld formed by
mixing of two magmas: an early, high-Mg ultramafic (U) magma and a
later, Al-rich tholeiitic (A) magma that had more radiogenic Sr (Sharpe,
1985; Irvine and Sharpe, 1986). Sr isotopes suggest that influx of the more
radiogenic A magma started in the critical zone just below the UG1
chromitite (Eales et al., 1990), continued through to the end of the critical
zone (Kruger and Marsh, 1982; Lee and Butcher, 1990), and dominated in
the main zone (Sharpe, 1985). Increases in the Sr-isotope ratio of the
Bushveld magma coincide with the mineralized UG1 and UG2 chromitites
and Merensky Reef, leading to speculation that the PGEs were carried in
the A magma (Sharpe, 1985; Irvine and Sharpe, 1986). These speculations
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Figure 2. Stratigraphic sections of Rustenburg Layered Suite
showing location of Merensky Reef (MR) and UG2 and UG1
chromitites. Letters a-d correspond to locations shown in Fig-
ure 1. (Modified from Naldrett, 1989.)
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about PGE mineralization are unresolved because previous studies exam-
ined silicate minerals and not the actual PGE minerals.

Postmagmatic hydrothermal activity may also play a part in PGE
mineralization. Mineralogical and field studies document the presence of
veinlets filled with hydrothermal minerals and fluid inclusions (Schiffries
and Skinner, 1987; Boudreau et al., 1986; Schiffries and Rye, 1989, 1990),
“potholes” and other types of Merensky Reef mineralization that require
widespread volatile activity (Kintoch and Peyerl, 1990), and “dunite
pipes,” which have remobilized PGEs and hydrothermally altered PGE
chromitites (Schiffries, 1982).

Os isotopes are particularly appropriate for studying the source of
PGE mineralization because Os is one of the six PGEs and is present in
laurite (Ru, Ir, Os)S,, the principal Os-bearing mineral in the Bushveld
(Kinloch, 1982). 187Re decays to 1370Os, and because of the large Re/Os
fractionation between crust and mantle, any crustal source should have a
significantly higher 187Qs/ 1860 ratio than the mantle does. Neither hy-
drotherinal nor magmatic processes should fractionate Os isotopes, and if
minerals with very low Re/Os ratios are analyzed, then the 1870s/1860s
ratio of the Os-bearing mineral should reflect that of the Os source at the
time of the mineralization. For large volumes of mafic to ultramafic
magma such as the Rustenburg Layered Suite, a 1870s/ 1860s ratio similar
to that of tlie mantle at the time of formation is expected (0.9 for 2.0 Ga).
High Re/Os crustal materials such as granites, basalts, and clastic sedimen-
tary rocks have high 18705/ 18605 ratios (Ravizza and Turekian, 1987;
Walker et al., 1989). Hence the 1870s/1860s ratio of Os-bearing minerals
is a sensitive monitor of crustal contamination, whether from assimilation
of crust or from hydrothermal fluids.

Os ISOTOPES IN THE BUSHVELD COMPLEX

In this study we analyzed laurite-bearing samples from the UG1 and
UG?2 chromitites and the Merensky Reef in the eastern and western lobes
of the Bushiveld Igneous Complex. Methods are described in Appendix 1.
Sample locations are indicated by letters a through d in Figures 1-3.

The analyzed 187Qs/1360s ratios range from 1.28 to 1.60 and are
significantly more radiogenic than predicted for mantle-derived Os (Table
1). For the Merensky Reef, our value is similar to ratios obtained by Hart
and Kinloch (1989). That study showed a lateral isotopic homogeneity of
laurite samples regardless of location (Fig. 3). An exception are two er-
lichmanite grains (OsS;) with ratios of ~0.95, indicating a mantle deriva-
tion. Our results show that the Bushveld is more heterogeneous when the
UG1 and UG2 chromitites and Merensky Reef from both eastern and
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Figure 3. 870s/1860g ratios for laurites from locations a through d. Data
from this study and from Hart and Kinloch (1989).
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western lobes are considered. For example, there is an increase in the
18705/ 18605 ratio of laurite with height in the intrusion. The Os from the
UG chromitite, which is stratigraphically the lowest, is the least radio-
genic. The Merensky Reef is the highest and the most radiogenic (Fig. 4).
In both lobes, similar values occur at the UG1 chromitite, but lower ratios
were maintained in the eastern lobe until formation of the Merensky Reef
(Fig. 4). Variable amounts or sources of radiogenic Os may explain the
differences observed vertically and between lobes. The data suggest that
the eastern and western lobes recorded different magmatic or hydrother-
mal histories with respect to Os, in spite of their lithologic similarities.
The high '870s/1360s ratios in both the eastern and western lobes of
the Bushveld require either system-wide incorporation of radiogenic Os or
aging of a magma by more than 30 m.y. (Allégre and Luck, 1980). Aging
of the magma is unreasonable on the basis of thermal considerations (Hart
and Kinloch, 1989), so crustal Os must have been added to the Bushveld.
Assimilation of crustal material by the Bushveld magmas is suggested by
Sr isotopes (Sharpe, 1985). The gabbroic-anorthositic rocks (A magmas)
that overlie the ultramafic rocks of the lower and critical zones (U mag-
mas) have more radiogenic Sr ratios (Fig. 4), and an increase in the
878r/36Sr ratio is recorded in the upper critical zone, where the UG and
UG2 chromitites and Merensky Reef are (Sharpe, 1985; Kruger and
Marsh, 1982; Eales et al., 1990; Lee and Butcher, 1990). The most likely
contaminants that would satisfy both the Sr and Os data are either lower-
crustal rocks or country rocks in contact with the Bushveld intrusion.

CRUSTAL CONTAMINATION IN THE BUSHVELD—
A MAGMATIC OR HYDROTHERMAL PROCESS?

Contact metamorphic assemblages for the Rustenburg Layered Suite
indicate its emplacement at depths of 10-15 km and at 700-800 °C
(Sharpe and Hulbert, 1985). Feeder magmas that supplied the Bushveld
Complex may have resided deeper than this and thus may have assimilated
lower crust. A 3.0 Ga granulite with 0.37 ppb Re and 0.16 ppb Os added
to a tholeiitic A magma (0.84 ppb Re, 0.03 ppb Os; Morgan and Lovering,
1967) can produce '37Qs/1860s ratios of ~1.5 with only 10% assimila-
tion. Unreasonably high amounts (>70%) are required to raise the
18705/ 18605 ratio of a U magma (0.5 ppb Re; 1.0 ppb Os; Watker et al.,
1989). Similar results are obtained for a granitic crust contaminant
(Allégre and Luck, 1980; Hart and Kinloch, 1989). Thus, if lower-crust
assimilation is called upon to explain PGE mineralization in the Bushveld
Complex, then the tholeiitic A magma must have been the carrier of Os,
and by inference other PGEs, to explain the observed 1870s/136(0s ratios.
Similar conclusions have been reached for PGE mineralization in the
Stiliwater Complex on the basis of Os isotopes (Lambert et al.,, 1989,
Martin, 1989).

Nearly 60% of the country rock in contact with the Bushveld Com-
plex is shale, including pyritic black shale (Button, 1976). If this shale has
high Os concentrations similar to black shale elsewhere (0.9 ppb Os;
56 ppb Re; Ravizza and Turekian, 1987), assimilation of only 8% shale in

TABLE 1. 18705/18605 RATIOS OF LAURITE-BEARING
CHROMITITES UG1, UG2 AND MERENSKY REEF

Sample Location* 1870¢/18605 20

12UG15 b--UG1 1.280 0.004
UG246 c--UG2 1.530 0.003
UG2-7 ¢--UG2 1.397 0.007
UG2-8 c--UG2 1.386 0.016
11BV7613 d--UG1 1.280 0.001
9BV7615B d--UG2 1.340 0.006
10BV7616 d--UG2 1.260 0.006
15MRSRT d--MR 1.600 0.004

*Locations b,c, and d shown in Figure 1.
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a U magma can produce 187Qs/186Qs ratios of ~1.5. However, to pro-
duce the same ratio in an A magma, less than /% is required.

An alternative proposal is that a hydrothermal process accounts for
radiogenic Os in the Bushveld (Hart and Kinloch, 1989). Given the small
amount of shale assimilation required to produce high 1870s/ 1860s ratios,
the possibility that hydrothermal fluids carried radiogenic Os from the
country rocks into the Bushveld Complex is easy to envisage. Transvaal
shales have been metamorphosed at temperatures of ~500 °C up to 40 km
from the Bushveld intrusive contact (Button, 1976; Engelbrecht, 1976),
and crosscutting vein networks within the Bushveld document enhanced
permeability and contain hydrothermal minerals (Schiffries and Skinner,
1987). Sufficient heat and permeability were present so that hydrothermal
fluids could move significant amounts of crustal Os from sedimentary
rocks and produce the radiogenic !87Qs/!860s ratios observed in the
Bushveld ores.

GENESIS OF PGE DEPOSITS

We have assumed that all PGEs in the Bushveld Complex can be
traced through the chemical behavior of Os. This may not be entirely true,
as the various PGEs are concentrated differently in proximity to potholes
and dunite pipes where volatile activity is documented (Kinloch and
Peyerl, 1990). However, the chromitite layers in the Bushveld enriched in
the other PGEs are also enriched in Os, which suggests similar chemical
behavior (Teigler, 1990). Nevertheless, some PGEs in the Bushveld must
come from mantle sources, as supported by mantle 137Qs/1860s ratios in
erlichmanite, PGE minerals included in chromite, and close association of
PGEs with mafic rock types (Hart and Kinloch, 1989; Kinloch, 1982).
The Os-isotope data presented here are intriguing, however, as they indi-
cate that the mantle is not the only source for PGEs in these deposits.
Rather, some of the PGEs were obtained from the crust and concentrated
in the layered intrusion by assimilation or hydrothermal processes. Given
the size of the Bushveld and the magnitude of thermal energy expended
during its formation, both processes were likely effective to some degree.

These implications are significant in the realm of ore-deposit genesis.
The concept of crustal source and hydrothermal transport for base and
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Figure 4. Stratigraphic trends in '70s/'%60s and
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precious metals associated with felsic intrusions is not new (Knight, 1957),
though new evidence now supports it (e.g., Titley, 1985; Bouse et al.,
1990). In contrast, platinum-group mineralization in layered mafic intru-
sions has long been represented as mantle-derived, truly “magmatic” ore
deposition (Willemse, 1969; Naldrett, 1989). The Os-isotope data pre-
sented here and for layered mafic intrusions elsewhere (Martin, 1989;
Lambert et al., 1989) are mounting evidence that crustal involvement and
hydrothermal processes must be seriously considered in the genesis of
platinum-group mineral deposits as well.

APPENDIX 1. METHODS OF ANALYSIS

Os was extracted from the samples by crushing 1-5 g of sample in an agate
mortar and adding concentrated, doubly distilled 16N HNO; to the powder in a still
similar to the one described by Walker (1988). The solution was heated to 115 °C
to produce OsQ,, which was trapped as OsClg in a 3:1 mixture of doubly distilled
10N HCI and ethanol. Isotopic ratios were determined from this solution on a VG
inductively coupled plasma mass spectrometer (ICP-MS; Ruiz and McCandless,
1990; McCandless and Ruiz, 1990). To confirm that laurite was successfully dis-
solved, we distilled and analyzed three splits from a sample of UG2 in which
detailed studies by scanning electron microscope showed laurite to be the only
Os-bearing mineral. Excellent signals were obtained on the [CP-MS. Residues were
combined, redistilled, and reanalyzed; no measurable Os was detected. We are
therefore confident that laurite was dissolved during the distillation process. Repro-
ducibility of the data based on multiple runs of standards and samples is within 1%,
which is adequate for this study.
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